Get chiller related information TCU Heating Circulators Recirculating Chiller 产品分类菜单

News

  • air water cooling system

    78

    Air - water cooling systems are versatile setups that combine air and water as cooling agents. They typically consist of components like heat exchangers, pumps, and fans. These systems operate based on heat transfer principles, where heat is transferred from a warm medium to water and then dissipated into the air. There are two main types: direct and indirect systems. Direct systems expose the warm medium directly to water, while indirect systems use heat exchangers for separation. Applications span across industrial processes, data centers, and commercial building HVAC systems. Their benefits include efficient heat transfer, flexibility in design, and relatively low environmental impact. However, factors like water management and maintenance need careful consideration.​

    View details
  • air cooled chilled water system

    74

    Air - cooled chilled water systems are crucial cooling setups widely used in various sectors. These systems operate by using air as a cooling medium to cool down the refrigerant, which in turn cools the water in a closed - loop. Key components include an air - cooled condenser, compressor, expansion valve, and evaporator. In operation, the compressor raises the refrigerant's pressure and temperature. The hot refrigerant is cooled by air in the condenser, then expands and absorbs heat from water in the evaporator. Applications span commercial buildings like offices and shopping malls, industrial facilities, and data centers. They offer advantages such as simplicity in installation due to no need for a water - cooling infrastructure, reduced water usage, and good performance in moderate - climate regions. However, their efficiency may be affected in extreme temperatures.​

    View details
  • glycol chiller canada

    103

    Glycol chillers in Canada are vital cooling systems that use glycol - water mixtures as heat transfer fluids. They play a crucial role in various industries and applications across the country. These chillers work by circulating the glycol - water solution through a closed - loop system, absorbing heat from the process or space being cooled and releasing it elsewhere. In Canada, they are widely used in commercial buildings for HVAC systems, in industrial processes like food and beverage production, and in data centers for server cooling. Glycol chillers offer advantages such as efficient heat transfer, freeze protection in cold Canadian climates, and compatibility with different applications. Understanding their operation, types, and applications helps in making informed decisions regarding their use in Canada.​

    View details
  • evap chiller

    65

    Evap chillers, short for evaporative chillers, are cooling devices that utilize the principle of evaporation to remove heat. They mainly consist of an evaporative section, a refrigerant system, and a water circulation system. In the evaporative section, water evaporation cools the refrigerant. These chillers are widely used in commercial buildings like offices and hotels for air - conditioning, and in industrial settings such as manufacturing plants for process cooling. Their advantages include high energy - efficiency, especially in dry climates, and relatively low initial cost. However, they have limitations like higher water consumption and potential for water - related issues. Regular maintenance, including checking water quality, inspecting refrigerant levels, and maintaining the evaporative components, is crucial for optimal performance.​

    View details
  • temperature water bath

    113

    Teperature water baths are essential laboratory devices for maintaining stable temperatures. They operate with heating elements and precise temperature - regulating systems. Water, with its high specific heat capacity, is the heat - transfer medium, enabling gentle and consistent heating. These baths are designed to reach temperatures up to around 100°C. In biological research, they are used for cell culture incubation at 37°C. In chemistry, they control reaction temperatures. Their uniform temperature distribution, achieved through water circulation, is crucial. When using them, safety measures like proper water filling and avoiding overheating are vital. Regular maintenance, including cleaning and thermostat calibration, ensures accurate temperature control and long - term functionality.​

    View details
  • lab baths

    57

    Lab baths, essential in scientific research, are temperature - controlled devices for maintaining samples at specific temperatures. They operate through heating elements, cooling systems (if applicable), and precise temperature - regulating mechanisms. There are diverse types, such as water baths for gentle heating and uniform temperature distribution, oil baths for higher - temperature applications, and circulating baths offering enhanced heat transfer. Lab baths find use in biology for incubating cell cultures, in chemistry for reaction control, and in material science for sample preparation. When using them, safety precautions like proper liquid filling and avoiding overheating are crucial. Regular maintenance, including cleaning and checking temperature accuracy, ensures optimal performance and longevity.​

    View details
  • heat chiller

    56

    Heat chillers, also known as heat - activated or absorption chillers, are unique cooling devices. They operate on a heat - driven cycle, using a refrigerant - absorbent pair. Heat sources like waste heat, solar energy, or natural gas power the process. These chillers are valuable in scenarios where traditional electrically - driven chillers are inefficient or where waste heat can be recycled. They find applications in industrial plants, large - scale commercial buildings, and some green - energy - focused facilities. Their advantages include energy - efficiency in the right conditions, reduced reliance on electricity, and environmental friendliness. However, they also have limitations such as complex installation and lower efficiency at partial loads. Maintenance involves ensuring proper heat source supply, checking refrigerant - absorbent levels, and monitoring system components.​

    View details
  • chilled water cooling system

    65

    Chilled water cooling systems are widely used for heat removal in various settings. They operate by circulating chilled water through a closed - loop to absorb heat from the area or process being cooled. The system mainly consists of a chiller, pumps, pipes, and cooling coils. In commercial buildings like offices and hotels, as well as in industrial applications such as data centers and manufacturing plants, these systems ensure efficient temperature control. Their advantages include high cooling capacity, even temperature distribution, and energy - efficiency. Compared to direct - expansion systems, they offer better scalability. Regular maintenance, involving checking water quality, inspecting components, and monitoring system performance, is crucial for optimal operation and longevity.​

    View details
  • high efficiency portable heater

    73

    High - efficiency portable heaters are compact, mobile heating devices engineered to deliver warmth with minimal energy consumption. This article provides an in - depth exploration. It first defines their characteristics, such as portability and energy - saving features. The working principles, like advanced convection and radiation mechanisms, are explained. Different types, including electric infrared, forced - air, and some innovative hybrid models, are introduced. Their applications span residential, commercial, and outdoor scenarios, from heating small rooms to providing warmth at construction sites. The advantages in terms of energy savings, cost - effectiveness, and environmental friendliness are detailed. Maintenance aspects, such as cleaning and component checks, are covered. Guidance on choosing the right high - efficiency portable heater, considering factors like heating capacity, energy ratings, and safety features, is also provided.​

    View details
  • a small heater

    104

    Small heaters are compact yet powerful devices designed to provide localized warmth in various settings. This article offers a detailed exploration. It first defines small heaters in terms of their size and portability. The working principles, including convection, radiation, and conduction, are explained. Different types, such as space heaters, portable electric heaters, and small propane heaters, are introduced, along with their features. Their applications span from heating small rooms in homes to providing warmth in outdoor workspaces. Maintenance aspects, like cleaning, safety checks, and component inspections, are covered. Guidance on choosing the right small heater, considering factors like heating capacity, energy consumption, and safety features, is also provided.​

    View details
Expand more!